Next Generation Science Standards (NGSS) and Common Core State
Standards (CCSS) Connections

Once Upon a Life Science Book: 12 Interdisciplinary Activities to Create Confident Readers

Chapters 1–3 introduce the book, the reading strategies, and principles of argumentation.

Chapter 4. A-Maze-ing Worms

NGSS Adaptations: Tips for making this lesson more three-dimensional

- The lab asks students to make a claim and provide evidence. It does not explicitly tell them to include reasoning. Instruct students to include "Reasoning" in their response.
- Address the information-processing aspect more deeply by asking students to make inferences
 about the mealworms' sensory receptors based on the mealworms' responses or lack of
 response to stimuli.
- Explicitly address the crosscutting concept of patterns by asking students: what kind of data patterns indicate that a mealworm responds to a stimulus? What kind of data pattern would suggest the stimulus does not affect the mealworm?

Standard

MS. Structure, Function, and Information Processing

Performance Expectation

The materials/lessons/activities outlined in this chapter are just one step toward reaching the performance expectation listed below.

MS-LS1-8. Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories.

		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and	Planning and Carrying Out	Students design and carry out an
Engineering Practices	Investigations	experiment to see how different
		stimuli affect mealworm behavior.
	Analyzing and Interpreting Data	Students use data from their own experiment to support their claim.

	Engaging in Argument From Evidence	Students write an argument to support their claim about how mealworm behavior is affected by the stimulus of their choosing. Students read about a claim made
		by a biologist regarding learning in <i>C. elegans</i> and analyze the evidence he provides for that claim.
Disciplinary Core Idea	Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.	Students observe information processing at the macro level in mealworms.
Crosscutting Concept	Patterns	Both the articles and the activity illustrate that scientists look for patterns in data to make claims.
	CCSS Connections	
Reading Standards	CCSS.ELA-Literacy.RST.6-8.1 Cite specific textual evidence to support analysis of science and technical texts.	Reading Strategies: comprehension coding and reading in groups (both of which require citing specific chunks of text).
	CCSS.ELA-Literacy.RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.	Comprehension coding requires students to note when their prior knowledge conflicts with what the text says.
	CCSS.ELA-Literacy.RST.6-8.5 Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	Students outline the argument made by a practicing scientist about the role of dopamine in learning.
Writing Standards	CCSS.ELA-Literacy.WHST.6-8.1 Write arguments focused on discipline-specific content.	Students write an argument to support their claim about how mealworm behavior is affected by the stimulus of their choosing.
	CCSS.ELA-Literacy.WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research.	Students compare and contrast their own experiment with one conducted by a practicing scientist.

Chapter 5. Cells R Us

NGSS Adaptations: Tips for making this lesson more three-dimensional

The lab asks students to make a claim and provide evidence. It does not explicitly tell them to include reasoning. Instruct students to include "reasoning" in their response.

Standard

MS. Structure, Function, and Information Processing

Performance Expectations

- MS-LS1-1. Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.
- MS-LS1-2. Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and Engineering Practices	Asking Questions and Defining Problems	Students brainstorm and select a question they can answer based on observations of several types of cells.
	Engaging in Argument From Evidence	Students make a claim to answer the question they have selected and defend it based on their lab data.
Disciplinary Core Idea	All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).	Students observe cells and then read about cells.
	Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell.	Students observe cell parts and then read about the function of those parts.
Crosscutting Concept	Structure and Function	Students observe cell parts and read about how those structures function in the cell.
	CCSS Connections	
Reading Standards	CCSS.ELA-Literacy.RST.6-8.4 Determine the meaning of symbols, key terms, and other domain-specific	Using context clues to find the meaning of new words

	words and phrases as they are used in a specific scientific or technical context	
	relevant to grades 6–8 texts and topics.	
	CCSS.ELA-Literacy.RST.6-8.9 Compare and contrast the information gained from experiments, simulations, video, or multimedia sources with that gained from reading a text on the same topic.	The writing prompt requires that students use what they learned in the lab and the reading in order to have sufficient information for the FBI
Writing Standard	CCSS.ELA-Literacy.WHST.6-8.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.	agent. Prompt: Agent Mildew has just started working for the FBI. It's his first day on the job, and he has been given some cells that were collected from a crime scene. He needs your help to figure out if the cells come from a plant, animal, or
		bacteria. Write a letter to Agent Mildew explaining what he should look for under the microscope to know what kind of cells he has.

Chapter 6. Healing Powers

NGSS Adaptations: Tips for making this lesson more three-dimensional

- In the NGSS, the topic of mitosis has been moved to high school. Therefore, the NGSS standards below are for grades 9–12 and the Common Core State Standards address grade bands 6–8 and 9–10.
- This lesson begins with a video activity. Try introducing that activity with a phenomenon that will be common to students—for example, they fall and scrape a knee or elbow. Ask what happens in their body to get new skin? Where does the skin come from? Accept all answers and then move to the video activity. After the activity, ask students if they have any more guesses for where their new skin comes from. Tell them that they can use the reading to refine their answers.
- The focus in the NGSS (thankfully!) is on the big picture of mitosis, rather than the stages. If your state has adopted the NGSS, skip the cell cycle diagram worksheet.
- Directly address the crosscutting concept of stability and change by pointing out that the goal of the changes made by Andre's skin cells is to maintain homeostasis in his skin covering.

Standard
HS. Inheritance and Variation of Traits
Performance Expectation

The materials/lessons/activities outlined in this chapter are just one step toward reaching the performance expectation listed below.

HS-LS1-4. Use a model to illustrate the role of cellular division (mitosis) and differentiation in producing and maintaining complex organisms.

Dimension	NGSS code/citation	Matching student task/question taken directly from activity
Science and Engineering Practices	Developing and Using Models	Students watch a video model of mitosis and study visual representations, record observations, and make predictions.
	Constructing Explanations	Prompt: If Andre asked you how his body got new cells, what would you tell him?
Disciplinary Core Idea	LS1.B: Growth and Development of Organisms In multicellular organisms individual cells grow and then divide via a process called mitosis, thereby allowing the organism to grow. The organism begins as a single cell (fertilized egg) that divides successively to produce many cells, with each parent cell passing identical genetic material (two variants of each chromosome pair) to both daughter cells. Cellular division and differentiation produce and maintain a complex organism, composed of systems of tissues and organs that work together to meet the needs of the	The silent video provides students with a model for mitosis. Students use the reading to create an explanation for what takes place.
Crosscutting Concept	whole organism. (HS-LS1-4) Stability and Change	Students observe how changes in a cell produce more cells, while those changes help maintain homeostasis when new cells are needed.
	CCSS Connections	
Reading Standards	CCSS.ELA-Literacy.RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).	Reading Skill: Previewing diagrams and illustrations
	CCSS.ELA-Literacy.RST.9-10.7 Translate quantitative or technical	

	information expressed in words in a	
	· ·	
	text into visual form (e.g., a table or	
	chart) and translate information	
	expressed visually or mathematically	
	(e.g., in an equation) into words.	
Writing Standards	CCSS.ELA-Literacy.WHST.6-8.2	Students translate their original
	Write informative/explanatory texts,	descriptions of mitosis into a
	including the narration of historical	correct scientific description, using
	events, scientific procedures/	proper terms.
	experiments, or technical processes.	
		Students explain to Andre what
	CCSS.ELA-Literacy.WHST.9-10.2	happened to his skin.
	Write informative/explanatory texts,	
	including the narration of historical	
	events, scientific procedures/	
	experiments, or technical processes.	

Chapter 7. No Bones About It

NGSS Adaptations: Tips for making this lesson more three-dimensional

- The lab asks students to make a claim and provide evidence. It does not explicitly tell them to include reasoning. Instruct students to include "Reasoning" in their response.
- The NGSS do not include classification for middle school students. However, the main point of
 this lesson is to compare the muscular and skeletal systems of grasshoppers with that of
 humans. The grasshopper dissection will motivate students to be interested in that idea! You
 can de-emphasize the content that relates to characteristics of arthropods (it is a secondary
 point in the lesson already). Skip the graphic organizer for this chapter.

Standard

MS. Structure, Function, and Information Processing

Performance Expectation

The materials/lessons/activities outlined in this chapter are just one step toward reaching the performance expectation listed below.

MS-LS1-3. Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and	Engaging in Argument From Evidence	Students use their dissection
Engineering Practices		activities to decide which part of a
		grasshopper serves as its skeleton.
Disciplinary Core	LS1.A: Structure and Function	Students observe the relationship
Ideas	In multicellular organisms, the body is a	between the human skeletal and
	system of multiple interacting	muscular systems and then
	subsystems. These subsystems are	compare them to those systems in

Crosscutting Concept	groups of cells that work together to form tissues and organs that are specialized for particular body functions. Structure and Function	Students should infer that the outer covering of the grasshopper is the skeleton because it has the same function as the human bones.
	CCSS Connections	1
Reading Standards	CCSS.ELA-Literacy.RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.	Students work through the dissection by reading instructions and answering questions.
	CCSS.ELA-Literacy.RST.6-8.5 Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	Reading Skill: Identifying text signals for examples and lists.
Writing Standards	CCSS.ELA-Literacy.WHST.6-8.9 Draw evidence from informational texts to support analysis, reflection, and research.	Students use the article to prepare an explanation for an absent classmate. They must also draw from their lab, as the article only contains part of the information needed.

Chapter 8. The Case of the Tree Hit Man

NGSS Adaptations: Tips for making this lesson more three-dimensional

- Plant structure and function are not part of the NGSS for middle school. However, the article for
 this chapter is also about photosynthesis, which is important in the NGSS. Replace the "Plant
 Police Academy" with the modeling Photosynthesis activity from
 www.calacademy.org:8080/sites/default/files/assets/docs/pdf/photosynthesisroleplay_lesson.pdf (many
 thanks to Karen Kraus for making me aware of this great resource). Save Part 2 of the activity
 (cellular respiration) for later.
- Have students consider the question in Part 3 of the Plant Police Academy (asking which
 direction food and water travel in a plant) before reading the article. This would make an easy
 "warm up" task for the beginning of class.
- Continue with the lesson as written, but you may wish to skip the graphic organizer.

Standard (based on the changes described above)	
MS. Matter and Energy in Organisms and Ecosystems	
Performance Expectation	

The materials/lessons/activities outlined in this chapter are just one step toward reaching the performance expectation listed below.

MS-LS1-6. Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

, ,		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and Engineering Practice	Constructing Explanations	Students use the information from the article and their exploration to create an explanation for how the hit man killed the tree.
Disciplinary Core	LS1.C: Organization for Matter and	The photosynthesis modeling
Ideas	Energy Flow in Organisms Plants, algae (including phytoplankton), and many microorganisms use the energy from light to make sugars (food) from carbon dioxide from the atmosphere and water through the process of photosynthesis, which also releases oxygen. These sugars can be used immediately or stored for growth or later use.	activity helps students see the chemical reaction of photosynthesis, while also emphasizing the sources and locations of the reactants. The article follows the product (glucose) as it moves through the plant for storage.
	PS3.D: Energy in Chemical Processes and Everyday Life The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen.	
Crosscutting Concepts	Energy and Matter: Flow, Cycle, Conservation	Students observe the flow of energy and matter in the
	Systems and System Models	photosynthesis modeling activity, and then see more detail of the system in the article.
	CCSS Connections	
Reading Standard	CCSS.ELA-Literacy.RST.6-8.7 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table).	Reading Skill: Previewing diagrams and illustrations
Writing Standard	CCSS.ELA-Literacy.WHST.6-8.2 Write informative/explanatory texts,	Writing Prompt: The town of Magnolia Springs has decided to

including the narration of events, scientific procedure experiments, or technical	the police detective called in to
---	-----------------------------------

Chapter 9. A Gene for Drunkenness?

NGSS Adaptations: Tips for making this lesson more three-dimensional

The NGSS ask students to examine environmental versus genetic influences specifically on size and growth. However, students are much more interested in understanding how their own bodies work and looking at environmental versus genetic influences on a trait such as alcoholism will engage them and help them to think much more deeply. I suggest using this topic first before talking about growth or using it to extend the topic after using growth to introduce the idea of interactions between environmental and genetic influences on a trait.

Standard

MS. Growth, Development, and Reproduction of Organisms

Performance Expectation

The materials/lessons/activities outlined in this chapter are just one step toward reaching the performance expectation listed below.

MS-LS1-5. Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and	Developing and Using Models	In the game How Do the Chips
Engineering Practice		Stack Up, students use a visual
		model of risk to represent the
		genetics and experiences that may
		affect their client.
Disciplinary Core Idea	LS3B. Variation of Traits	Both the activity and article
	Environmental factors also affect	examine the interplay between
	expression of traits, and hence affect	genes and the environment for the
	the probability of occurrences of traits	topic of alcoholism.
	in a population. Thus the variation and	
	distribution of traits observed depends	
	on both genetic and environmental	
	factors.	
Crosscutting Concept	Cause and Effect	The activity, the reading, and the
		writing prompt require students to
		think about the complicated
		systems involved in cause and

		effect with genetics. By the end of the reading, students can answer the question "How would you describe what causes alcoholism?"
	CCSS Connections	
Reading Standard	CCSS.ELA-Literacy.RST.6-8.5 Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	Reading Strategy: Chunking
Writing Standard	CCSS.ELA-Literacy.WHST.6-8.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.	Writing Prompt: Your friend says that because his dad and grandpa both had heart attacks, he knows he will have one, too. What would you say to him?

Chapter 10. Oh! I Gotta Pee!

NGSS Adaptations: Tips for making this lesson more three-dimensional

- This lesson requires students to investigate the interactions between the digestive, circulatory, and excretory systems. However, they may not be thinking about the systems in those terms.
 You may need to explicitly point out to students that this lesson illustrates the connections between those systems.
- Change the writing prompt at the end of the lesson to the following:

Your little brother says that after he drinks, a tube takes the liquid from his stomach to his bladder. Make a counter-claim: "What really happens when he drinks?" Use the structures you saw during the activity as evidence to support your claim and refute your brother's claim. Be sure to include your reasoning.

Standard

MS-Structure, Function, and Information Processing

Performance Expectation

The materials/lessons/activities outlined in this chapter are just one step toward reaching the performance expectation listed below.

MS-LS1-3. Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Dimension	NGSS code/citation	Matching student task/question taken directly from activity
Science and	Engaging in Argument From Evidence	Make a claim: How does water go
Engineering Practice		from drinking to urination? Use the
		structures you saw during the
		activity as evidence to support your
		claim. Be sure to include your

		reasoning.
Disciplinary Core Idea	LS1.A: Structure and Function In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work together to form tissues and organs that are specialized for particular body functions.	Students look for the interactions between the three systems in the production of urine.
Crosscutting Concepts	Systems and System Models Structure and Function Stability and Change	Students will see that the interaction between systems is complicated as they try to piece together the flow of liquid. The article (in particular) points out structure and function and talks
	CCSS Connections	about the concept of homeostasis.
Reading Standard	CCSS.ELA-Literacy.RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.	Reading Skill: Pause, retell, and compare
Writing Standard	CCSS.ELA-Literacy.WHST.6-8.1 Write arguments focused on discipline-specific content.	The revised writing prompt asks students to summarize their learning in the form of an argument.

Chapter 11. A Crisis of Crabs

NGSS Adaptations: Tips for making this lesson more three-dimensional

After students read the article, provide the data below. Ask, "Does this data support the argument made in the article? Why or why not?" (Note that Columbus, GA is a city in southern Georgia. Rainfall there is being used as a proxy for rainfall reaching the estuary).

	Inches of Precipitation	Hard Crab Harvest
Year	Columbus, GA	(pounds)
1996	43.72	5,791,288
1997	50.92	6,808,290
1998	32.78	5,037,747
1999	26.39	3,901,226
2000	35.59	3,202,634
2001	38.41	2,702,493

2002	44.09	3,188,992
2003	56.43	1,857,755
2004	48.99	3,066,851
2005	62.51	4,387,042
2006	38.84	4,076,881

Source: Data for rainfall are from www.weather.gov/ffc/rainfall_scorecard. Data for harvest are from http://coastalgadnr.org/sites/uploads/crd/pdf/FMPs/BlueCrabFMP.pdf.

Standard

MS-Matter and Energy in Organisms and Ecosystems

Performance Expectations

- MS-LS2-3. Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem.
- MS-LS2-4. Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and	Developing and Using Models	Students develop a model of
Engineering Practices		ecosystem activity for a local
		ecosystem. They use a model of a
		more complex ecosystem to
		determine how loss of blue crabs
		could affect other species.
	Analyzing and Interpreting Data	Students analyze and interpret
		data on blue crab harvest and
		rainfall to decide if it supports an
		argument.
Disciplinary Core	LS2.A: Interdependent Relationships in	Students observe the inter-
Ideas	Ecosystems	relatedness of organisms in a local
	Organisms, and populations of	ecosystem and read about a more
	organisms, are dependent on their	complicated aquatic ecosystem.
	environmental interactions both with	Students use food webs to
	other living things and with nonliving	determine relationships between
	factors.	species and what might happen if a
		species were removed or if an
	In any ecosystem, organisms and	abiotic factor changed.
	populations with similar requirements	
	for food, water, oxygen, or other	
	resources may	
	compete with each other for limited	
	resources, access to which	
	consequently constrains their growth	

	and reproduction.	
	Growth of organisms and population increases are limited by access to resources.	
	LS2.B: Cycle of Matter and Energy Transfer in Ecosystems Food webs are models that demonstrate how matter and energy is transferred between producers, consumers, and decomposers as the three groups interact within an ecosystem. Transfers of matter into and out of the physical environment occur at every level.	
	LS2.C: Ecosystem Dynamics,	
	Functioning, and Resilience Ecosystems are dynamic in nature; their characteristics can vary over time. Disruptions to any physical or biological component of an ecosystem can lead to shifts in all its populations.	
Crosscutting Concept	Systems and System Models	Students generate connections between parts of an ecosystem that they observe. They read and diagram about a much more complicated ecological system.
	CCSS Connections	
Reading Standards	CCSS.ELA-Literacy.RST.6-8.2 Determine the central ideas or conclusions of a text; provide an accurate summary of the text distinct from prior knowledge or opinions.	Reading Skill: Pause, Retell, and Compare
	CCSS.ELA-Literacy.RST.6-8.5 Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	The graphic organizer for this chapter helps students understand the organization of the text.
Writing Standard	CCSS.ELA-Literacy.WHST.6-8.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.	Writing prompt: Study the diagrams that you have of your school yard ecosystem andthe ecosystem of the blue crab. What similarities do you see? What differences are there? Which similarities would you expect to see in many other ecosystems?

Chapter 12. The Outsiders

NGSS Adaptations: Tips for making this lesson more three-dimensional

Classification is not included in the *NGSS*. If your school has discontinued teaching classification, you might use this chapter to illustrate the variety of single-celled organisms and ways in which cell organelles show up in unusual places. It also illustrates the way that new evidence leads scientists to reconsider earlier conclusions.

Standard

MS. Structure, Function, and Information Processing

Performance Expectation

The materials/lessons/activities outlined in this chapter are just one step toward reaching the performance expectation listed below.

MS-LS1-1. Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells.

		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and Engineering Practice	Engaging in Argument From Evidence	Student study Euglena and make arguments as to whether they are plants or animals. Students read about arguments that scientists made historically about the place of protists.
Disciplinary Core Idea	LS1.A: Structure and Function All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell (unicellular) or many different numbers and types of cells (multicellular).	Students observe Euglena and then read about other single-celled eukaryotes.
Crosscutting Concept	Patterns	Students consider how scientists historically grouped organisms by looking at patterns in structure and function.
	CCSS Connections	
Reading Standard	CCSS.ELA-Literacy.RST.6-8.5 Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	Reading Skill: Chunking
Writing Standard	CCSS.ELA-Literacy.WHST.6-8.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.	Writing prompt: Do scientists ever change the way they classify things? What might cause them to change the way something is classified?

Chapter 13. Some Like It Hot

NGSS Adaptations: Tips for making this lesson more three-dimensional

Please note that if you have the first printing of this book (you can look in the front cover to check), it has errors in the activity for this chapter. You can find corrected pages at https://wheelertoppen.files.wordpress.com/2012/10/penguin_journeys.pdf.

Standard

MS. Natural Selection and Adaptations

Performance Expectations

- MS-LS4-4. Construct an explanation based on evidence that describes how genetic variations
 of traits in a population increase some individuals' probability of surviving and reproducing in
 a specific environment.
- MS-LS4-6. Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in populations over time.

		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and Engineering Practice	Analyzing and Interpreting Data	Students collect data from several rounds of "reproduction" of penguins and look for changes in the frequency of traits.
Disciplinary Core Ideas	LS4.B: Natural Selection Natural selection leads to the predominance of certain traits in a population, and the suppression of others.	In the simulation, students observe the frequency of traits changing in two different environments. Then they read about a range of specific adaptations that penguins have developed in cold and warm
	LS4.C: Adaptation Adaptation by natural selection acting over generations is one important process by which species change over time in response to changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more common; those that do not become less common. Thus, the distribution of traits in a population changes.	climates.
Crosscutting Concepts	Cause and Effect	Students answer the question "Did the penguins choose to adapt to their environment?" to help them recognize that the environment drives adaptation.

	Stability and Change	Students read about how changes become more stable once a species has adapted to a new environment.
	CCSS Connections	
Reading Standards	CCSS.ELA-Literacy.RST.6-8.3 Follow precisely a multistep procedure when carrying out experiments, taking measurements, or performing technical tasks.	Students use complex instructions for the simulation.
	CCSS.ELA-Literacy.RST.6-8.5 Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	Reading Skill: Text Signals for Compare and Contrast
Writing Standard	CCSS.ELA-Literacy.WHST.6-8.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.	Writing prompt: What physical adaptations do these foxes have that make them suited to their environment? What behavioral adaptations can you think of that might be useful for these foxes?

Chapter 14. Bacteria

NGSS Adaptations: Tips for making this lesson more three-dimensional

- The lab asks students to make a claim and provide evidence. It does not explicitly tell them to include reasoning. Instruct students to include "Reasoning" in their response.
- The NGSS do not include classification for middles school. This lesson can be used in the context of cells to expand student understanding of bacterial cells structures.

Standard

MS. Structure, Function, and Information Processing

Performance Expectations

- MS-LS1-1. Conduct an investigation to provide evidence that living things are made of cells;
 either one cell or many different numbers and types of cells.
- MS-LS1-2. Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function.

		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and	Planning and Carrying out	Students design an experiment to
Engineering Practices	Investigations	measure bacteria in several places,
		select a method of measurement,

	Analyzing and Interpreting Data	and write an argument based on their results.		
	Engaging in Argument From Evidence			
Disciplinary Core Idea	LS1.A: Structure and Function All living things are made up of cells,	The article describes the cell structure of bacterial cells.		
	which is the smallest unit that can be			
	said to be alive. An organism			
	may consist of one single cell			
	(unicellular) or many different numbers			
	and types of cells (multicellular).			
Crosscutting Concept	Scale, Proportion, and Quantity	A bacterium's small size makes it		
		difficult to see, even with a light		
		microscope. Students experience		
		the rapid life cycle of the bacteria		
	CCCC Compostions	as they become visible colonies.		
CCSS Connections				
Reading Standards	CCSS.ELA-Literacy.RST.6-8.4	Reading Skill: Finding the meaning		
	Determine the meaning of symbols, key	of new words		
	terms, and other domain-specific			
	words and phrases as they are used in a			
	specific scientific or technical context			
	relevant to grades 6-8 texts and topics.			
	CCSS.ELA-Literacy.RST.6-8.1	Prompt: Many people think all		
	Cite specific textual evidence to	bacteria cause disease. Is this true?		
	support analysis of science and technical texts.	Write a paragraph that supports your answer.		
Writing Standard	CCSS.ELA-Literacy.WHST.6-8.2	Writing prompt: This exploration		
	Write informative/explanatory texts,	lends itself to sharing the results.		
	including the narration of historical	Have your students write a letter to		
	events, scientific procedures/	the principal or school newspaper		
	experiments, or technical processes.	describing their experiment and		
		what they found. They should		
		include relevant information from		
		the reading. How concerned should		
		the school be about their findings?		
		Send the best letters to the		
		principal or newspaper.		

Chapter 15. Hunting the Ancient Whales

NGSS Adaptations: Tips for making this lesson more three-dimensional

• The lab asks students to make a claim and provide evidence. It does not explicitly tell them to include reasoning. Instruct students to include "Reasoning" in their response.

You will want to have your students look at pictures of embryos of various developing animals to
meet MS-LS-4-3. Whales and dolphins are not usually included in comparative embryo pictures.
When you do this, show your students an image of a dolphin embryo, which show the hind-limb
bud forming (it is later resorbed). One such image can be found at
www.tmmsn.org/education/dolphin_anatomy/dolphin_embryo.htm.

Standard

MS-Natural Selection and Adaptation

Performance Expectations

- MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout the history of life on Earth under the assumption that natural laws operate today as in the past.
- MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.
- MS-LS4-3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

in the fully for	Theu anatomy.	T
		Matching student task/question
Dimension	NGSS code/citation	taken directly from activity
Science and	Planning and Carrying out	After learning about the data
Engineering Practices	Investigations	collected by scientists studying
		whale evolution, students write
	Analyzing and Interpreting Data	about what data they would collect
		to understand bat evolution.
Disciplinary Core Idea	LS4.A: Evidence of Common Ancestry	The article describes several lines
	and Diversity	of evidence that scientists have
	The collection of fossils and their	used to piece together whale
	placement in chronological order (e.g.,	evolution. After reading, students
	through the location of the	are asked to describe how whales
	sedimentary layers in which they are	changed as they evolved from land
	found or through radioactive dating) is	animals to sea animals. Then they
	known	complete a graphic organizer to
	as the fossil record. It documents the	review how each type of data
	existence, diversity, extinction, and	contributed to the big picture.
	change of many life forms throughout	
	the history of life on Earth.	
	Anatomical similarities and differences	
	between various organisms living today	
	and between them and organisms in	
	the fossil record, enable the	
	reconstruction of evolutionary history	
	and the inference of lines of	
	evolutionary descent.	

	Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the fullyformed anatomy.			
Crosscutting Concept	Patterns	Students consider patterns in the fossil evidence to put together a potential time line of whale development. Then they read about how patterns in fossils, DNA, soil, and genetics tell the whale story.		
CCSS Connections				
Reading Standards	CCSS.ELA-Literacy.RST.6-8.4 Determine the meaning of symbols, key terms, and other domain-specific words and phrases as they are used in a specific scientific or technical context relevant to grades 6-8 texts and topics. CCSS.ELA-Literacy.RST.6-8.5	Reading Skill: Making sense of scientific names Students use the graphic organizer		
	Analyze the structure an author uses to organize a text, including how the major sections contribute to the whole and to an understanding of the topic.	to sort out the role that each piece of evidence played in the evolutionary argument made by the author.		
Writing Standard	CCSS.ELA-Literacy.WHST.6-8.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/experiments, or technical processes.	Writing Prompt: Bats pose a similar evolutionary problem to whales. They are also mammals, but they fly like birds. Bat evolution is not as well documented as whales because bat skeletons are tiny and do not fossilize well, but scientists are making some progress. Give students the handout Going Batty and ask them to think about how they would research the evolution of bats if they were scientists.		